
EE 2700 Project 3 – Microprocessor Controller

In this project, you will finish the microprocessor you started in Project 2 by
adding the control logic responsible for asserting the control signals at the right
times. You may work individually or in teams of two.

Design.

The controller must reset in a state that (a) puts the PC on the address bus and
(b) asserts the read signal. The first opcode of the first instruction will then be
available on the internal bus. Based on that opcode (and possibly the carry flag),
the state machine should transition to the first state of a sequence that will
execute that instruction. After execution is complete, the state machine must put
the PC back on the bus to fetch the next opcode.

Implement your controller with a state machine using a behavioral VHDL model.
You may write a test bench for the controller if it is helpful, but it is not required. If
you used a schematic in Project 2, create a schematic symbol for your controller
and integrate it with the rest of your CPU. If you used a structural VHDL model in
Project 2, add a component declaration and an instance of the controller to your
model. You will need to remove the control signals from the port list (e.g. ld_pc,
ld_mar, inc_pc, fetch, wr, op, etc.) as these will now come from the controller.

External to the CPU, the read, write and reset signals are required to be active
low. If you have designed your CPU so that these signals are active high, add
inverters to your top-level design between the (active low) ports and the (active
high) internal signals.

Create a test bench for the CPU. Modify your test bench first by including a
reference to the unsigned std_logic library:

 use IEEE.std_logic_unsigned.all;

Second, declare the opcodes for your instruction set in the architecture block of
the test bench. You may use the following constant declarations as an example:

 constant op_halt: std_logic_vector(7 downto 0) := X"00";

 constant op_jmp: std_logic_vector(7 downto 0) := X"01";

 constant op_jc: std_logic_vector(7 downto 0) := X"02";

 constant op_jnc: std_logic_vector(7 downto 0) := X"03";

 constant op_ldi: std_logic_vector(7 downto 0) := X"10";

 constant op_addi: std_logic_vector(7 downto 0) := X"11";

 constant op_adci: std_logic_vector(7 downto 0) := X"12";

 constant op_xori: std_logic_vector(7 downto 0) := X"13";

 constant op_ldm: std_logic_vector(7 downto 0) := X"20";

 constant op_addm: std_logic_vector(7 downto 0) := X"21";

 constant op_adcm: std_logic_vector(7 downto 0) := X"22";

 constant op_xorm: std_logic_vector(7 downto 0) := X"23";

 constant op_stm: std_logic_vector(7 downto 0) := X"30";

If necessary, modify the values of these constants to match your choice of
opcodes. Third, declare a memory in the test bench and initialize it so it contains
a program for your CPU to execute. Do this by including the VHDL code shown
below. (Note: this program computes 2 numbers, 145 (9116) and 232 (E816), then
uses Euclid’s algorithm to find their greatest common factor.)

 type ram_type is array (0 to 255) of STD_LOGIC_VECTOR (7 downto 0);

 signal ram: ram_type := (

 op_ldi, X"9E", -- 00 LDI 9E

 op_addi, X"AA", -- 02 ADDI AA (A = 48, C=1)

 op_stm, X"3F", -- 04 STM 3F

 op_adcm, X"3F", -- 06 ADCM 3F (A = 91, C = 0)

 op_stm, X"3F", -- 08 STM 3F

 op_adci, X"7B", -- 0A ADCI 7B (A = 0C, C = 1)

 op_xorm, X"3F", -- 0C XORM 3F (A = 9D, C = 1)

 op_adci, X"4A", -- 0E ADCI 4A (A = E8, C = 0)

 op_stm, X"3E", -- 10 STM 3E

 op_ldm, X"3F", -- 12 LDM 3F

 op_xori, X"FF", -- 14 XORI FF

 op_addm, X"3E", -- 16 ADDM 3E (C if [3E]>[3F])

 op_jc, X"28", -- 18 JC 28

 op_ldm, X"3E", -- 1A LDM 3E

 op_xori, X"FF", -- 1C XORI FF

 op_addm, X"3F", -- 1E ADDM 3F (C if [3F]>[3E])

 op_jnc, X"2E", -- 20 JNC 2E (done)

 op_addi, X"01", -- 22 ADDI 01

 op_stm, X"3F", -- 24 STM 3F

 op_jmp, X"12", -- 26 JMP 12 (top of loop)

 op_addi, X"01", -- 28 ADDI 01

 op_stm, X"3E", -- 2A STM 3E

 op_jmp, X"12", -- 2C JMP 12 (top of loop)

 op_halt, -- 2E HALT

 others=>X"FF");

Finally, model the memory by adding the following VHDL code after the first
BEGIN:

 process (clk)

 begin

 if rising_edge(clk) then

 if wr_L = '0' then

 ram(conv_integer(address))<=data;

 end if;

 end if;

 end process;

 data <= ram(conv_integer(address)) when rd_L = '0' else "ZZZZZZZZ";

Add a process that briefly asserts reset, then generates at least 135 clock pulses.
Simulate your test bench. If it is correct, the memory at address 63 (3F16) will
contain 29 (1D16). Print the last page of the simulation (making sure to show the
values on the address and data busses during the final two write cycles).

Switch ISE to implementation mode and open the project properties. Select a
device large enough to hold the CPU (e.g. Spartan 3E – XC3S500). Synthesize
the design and print the first 2 pages of the synthesis report.

Turn in the top level schematic or structural VHDL module, the VHDL code for
the controller, the test bench, the simulation results and the synthesis report.
(Note: submissions that lack the synthesis report will be accepted, but there will
be a 20% penalty.)

Design Guidelines

All the flip-flops in the design that have resets must use the same global
asynchronous reset (or preset). This is the reset which starts the system. No
internally generated asynchronous resets are allowed.

All flip-flops and registers must use a single, global clock. No internally generated
clocks are allowed.

The design should not have internal bidirectional busses. (The external
bidirectional data bus is created at the I/O port.)

